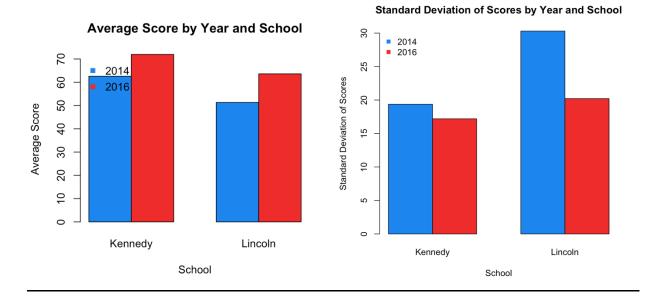

DARIEN OLIVA ECON 453 – PSET1

1A) <u>Summary Statistics for Scores</u>

Minimum	3
Maximum	100
Sample Mean	62.37
Sample Variance	546.0333
Sample Standard Deviation	23.36735
Coefficient of Variation	37.4657
Mean Absolute Deviation	18.6863
Q1	47.75
Median	63
Q3	83
IQR	35.25

1B) BOX & WHISKER PLOT FOR SCORES


Box & Whisker Plot For Scores - By Darien Oliva

SAMPLE MEAN & STANDARD DEVIATION BY SCHOOL (2 DECIMALS)				
	Lincoln	Kennedy		
Sample Mean	57.47	67.27		
Sample Standard Deviation	26.36	18.82		

SAMPLE MEAN &	STANDARD	DEVIATION B	Y YEAR	(2	DECIMALS)
---------------	----------	-------------	--------	----	-----------

	2014	2016
Sample Mean	56.95	67.79
Sample Standard Deviation	25.93	19.13

Bar Charts (made in R)

1D) Based on these numbers, we can see that the Kennedy School has a higher mean for test scores than the Lincoln School by approximately 10 points. As the max score is 100, and the matter is testing scores, I would say that this is a decently significant difference, and the school with the lower mean should definitely be interested in why this is. For the standard deviation of scores, both schools experienced a decrease of this from the year 2014 to the year 2016, notably a much larger decrease for the Lincoln School. This decreased standard deviation of scores for the Lincoln school could be a reflection on better or more efficient teaching or administration practices.

1C)

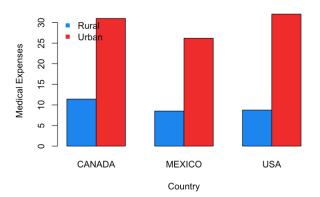
Category	Med Exp	Income	Education
Minimum		4	0
	1	-	
Maximum	62.231	99	18
Sample Mean	19.188	37.42	10.18
Sample Variance	201.7416	399.4613	22.33754
Sample Standard Deviation	14.20358	19.98653	4.72626
Coefficient of Variation	74.02509	53.40632	46.44302
Mean Absolute Deviation	11.62128	15.87017	3.9391
Q1	8.208	21	6
Median	16.351	34	11
Q3	26.822	48	13
IQR	18.614	27	7

2A) <u>Summary Statistics for All Numeric Values</u>

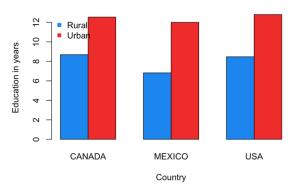
2B) Outliers in the data for medical expenses?

I used option ii from the instruction sheet (data point that is outside [Q1- 1,5•IQR, Q3+1.5•IQR]) and found that there was only 1 outlier for medical expenses, being 62.231.

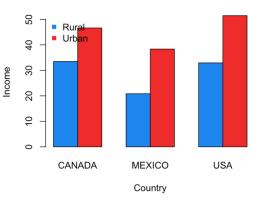
2C)

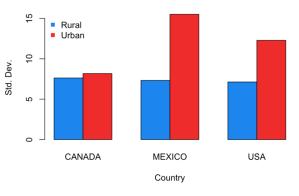

MEDICAL EXP	Sample Mean	Sample Standard Dev.
CANADA URBAN	31.00	8.18
MEXICO URBAN	26.19	15.52
USA URBAN	32.06	12.29
CANADA RURAL	11.43	7.63
MEXICO RURAL	8.51	7.32
USA RURAL	8.76	7.13

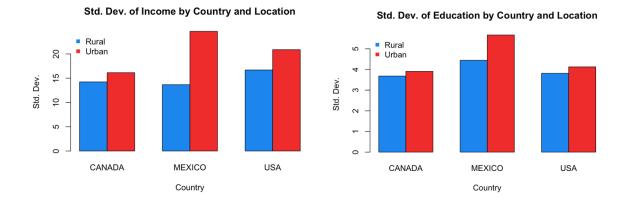
INCOME	Sample Mean	Sample Standard Dev.
CANADA URBAN	46.64	16.13
MEXICO URBAN	38.36	24.65
USA URBAN	51.57	20.88
CANADA RURAL	33.47	17.24


MEXICO RURAL	20.82	13.66
USA RURAL	32.93	16.69

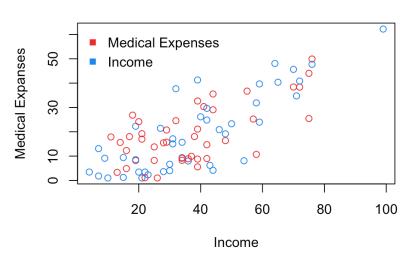
EDUCATION	Sample Mean	Sample Standard Dev.
CANADA URBAN	12.55	3.91
MEXICO URBAN	12.00	5.67
USA URBAN	12.80	4.13
CANADA RURAL	8.68	3.68
MEXICO RURAL	6.82	4.45
USA RURAL	8.47	3.81


Average Medical Expenses by Country and Location


Average Education length by Country and Location



Average Income by Country and Location


Std. Dev. of Medical Expenses by Country and Location

2D) Based on the generated sample statistics and the bar charts produced in R, we can see how the different countries and the different types of households compare. First, we can see that in urban househoulds the average medical expenses are much higher, which could be due to there being greater access to medical care in urban areas, and that the urban professionals are more expensive. Next, we can see that the standard deviations for the categories such as average medical expenses, income, and education, that Mexico has the highest, meaning they have the greatest variabilities in their data. Canada has the lowest stanadrd deviations or variabilities in these categories, and the USA is inbetween. Also important to note, that the rural averages are lower for every single category, and in every country, which is probablu due to the much different lifestsyles held by those in rural locations.

2E) Scatter Plot for Income vs Medical Expenses

Income vs Medical Expenses Scatter Plot

2F) <u>Sample Correlations for all numeric values</u> (2 decimals)

	Medical Exp.	Income	Education
Medical Exp.	1.00	0.75	0.69

Income	0.75	1.0	0.68
Education	0.69	0.69	1.00

Medical expenses and income have a moderately to strong, positive correlation of 0.75. Medical expenses and education have a slightly lower correlation, however still in the moderately good category being at 0.69. The magnitude is important because it shows us that there is definitely a significant positive correlation, so the categories here are related, and move in the same direction.

ADDEDNDUM

DARIEN OLIVA PSET1 R-Code

```
1A)
> #Darien Oliva - Econ 453 - PSET1
> min(pset1_data$score)
[1] 3
> max(pset1_data$score)
[1] 100
> mean(pset1_data$score)
[1] 62.37
> var(pset1_data$score)
[1] 546.0333
> sd(pset1_data$score)
[1] 23.36735
> CV <- sd(pset1_data$score) / mean(pset1_data$score) * 100</pre>
> CV
[1] 37.4657
> X <- pset1_data$score</pre>
> mean(abs(X-mean(X)))
[1] 18.6863
> Q1 <- quantile(X,0.25)</pre>
> 01
47.75
> median(X)
[1] 63
> Q3 <- quantile(X,0.75)</pre>
> Q3
83
> IQR <- quantile(X, 0.75)-quantile(X, 0.25)
> IOR
35.25
```

NOTE: COULD HAVE ALSO USED > $summary(pset1_data)$ or > summary(X) for most of these.

1B) > boxplot(X, col = "blue", main="Box & Whisker Plot For Scores - By Darien Oliva")

```
1C)
```

```
> aggregate.data.frame(x=pset1_data$score,by=list(pset1_data$year),FUN =
mean)
  Group.1
              Х
1
    2014 56.95
     2016 67.79
2
>aggregate.data.frame(x=pset1_data$score,by=list(pset1_data$school),FUN =
mean)
  Group.1
             Х
1 Kennedy 67.27
2 Lincoln 57.47
> aggregate.data.frame(x=pset1_data$score,by=list(pset1_data$year),FUN = sd)
  Group.1
                 х
    2014 25.92623
1
     2016 19.13287
2
> aggregate.data.frame(x=pset1_data$score,by=list(pset1_data$school),FUN =
sd)
  Group.1
                 х
1 Kennedy 18.82179
2 Lincoln 26.35939
OR COULD USE:
mean_S=aggregate(pset1_data$score, list(pset1_data$school,pset1_data$year),
FUN=mean)
>
> mean_S
 Group.1 Group.2
                      Х
1 Kennedy 2014 62.58
2 Lincoln
             2014 51.32
3 Kennedy
            2016 71.96
4 Lincoln
             2016 63.62
> mean_Ss=tapply(pset1_data$score, pset1_data[,c(1,2)], mean)
> barplot(mean_Ss, beside=T,
          col=c("dodgerblue2","firebrick2"),
+
          main = "Average Score by Year and School", ylab = "Average Score",
+
         xlab = "School")
+
> legend("topleft", c("2014","2016"), pch=15, bty="n",
         col=c("dodgerblue2","firebrick2"))
+
> sd_S=aggregate(pset1_data$score, list(pset1_data$school,pset1_data$year),
FUN=sd)
> sd_S
```

```
Group.1 Group.2 x
1 Kennedy 2014 19.36765
2 Lincoln 2014 30.30285
3 Kennedy 2016 17.19748
4 Lincoln 2016 20.20799
```

```
> sd_Ss=tapply(pset1_data$score, pset1_data[,c(1,2)], sd)
> barplot(sd_Ss, beside=T,
+ col=c("dodgerblue2","firebrick2"),
+ main = "Standard Deviation of Scores by Year and School", ylab = "Standard
Deviation of Scores", xlab = "School")
> legend("topleft", c("2014","2016"), pch=15, bty="n",
+ col=c("dodgerblue2","firebrick2"))
```

1D) N/A

2A)

```
> pset1_data <- read_excel("Downloads/pset1_data.xlsx",</pre>
      sheet = "medical_expenses")
+
> View(pset1_data)
> summary(pset1_data$medicalexpn)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
  1,000
          8.208 16.351 19.188 26.822 62.231
> summary(pset1_data$income)
  Min. 1st Ou. Median
                           Mean 3rd Ou.
                                            Max.
   4.00
          21.00
                  34.00
                          37.42
                                  48.00
                                           99.00
> summary(pset1_data$education)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
                                  13.00
   0.00
           6.00
                  11.00
                          10.18
                                           18.00
> var(pset1_data$medicalexpn)
[1] 201.7416
> var(pset1_data$income)
[1] 399.4613
> var(pset1_data$education)
[1] 22.33754
> sd(pset1_data$medicalexpn)
[1] 14.20358
> sd(pset1_data$income)
[1] 19.98653
> sd(pset1_data$education)
[1] 4.72626
> CV <- sd(pset1_data$medicalexpn) / mean(pset1_data$medicalexpn) * 100</pre>
> CV
[1] 74.02509
```

```
>
> CV <- sd(pset1_data$medicalexpn) / mean(pset1_data$medicalexpn) * 100</pre>
> CV
[1] 74.02509
> CV <- sd(pset1_data$income) / mean(pset1_data$income) * 100</pre>
> CV
[1] 53.40632
> CV <- sd(pset1_data$education) / mean(pset1_data$education) * 100</pre>
> CV
[1] 46.44302
> mean(abs(pset1_data$medicalexpn-mean(pset1_data$medicalexpn)))
[1] 11.62128
> mean(abs(pset1_data$income-mean(pset1_data$income)))
[1] 15.87017
> mean(abs(pset1_data$education-mean(pset1_data$education)))
[1] 3.9391
> IQR <- quantile(pset1_data$medicalexpn,0.75)-</pre>
quantile(pset1_data$medicalexpn,0.25)
> IQR
18.614
> IQR <- quantile(pset1_data$income,0.75)-quantile(pset1_data$income,0.25)</pre>
> IQR
27
> IQR <- quantile(pset1_data$education,0.75)-</pre>
quantile(pset1_data$education,0.25)
> IQR
  7
```

2B)

```
> IQR_med=quantile(pset1_data$medicalexpn,0.75)-
quantile(pset1_data$medicalexpn,0.25)
```

> IQR_med

75%

18.614

- > low_med=quantile(pset1_data\$medicalexpn,0.25)-1.5*IQR_med
- > low_med

25%

-19.713

> high_med=quantile(pset1_data\$medicalexpn,0.75)+1.5*IQR_med

> high_med

75%

54.743

```
> pset1_data$medicalexpn[which(pset1_data$medicalexpn <low_med |
pset1_data$medicalexpn > high_med)]
```

[1] 62.231

2C)

```
> medexpmean=aggregate(pset1_data$education,
list(pset1_data$country,pset1_data$location), FUN=mean)
```

> medexpmean

- Group.1 Group.2 x
- 1 CANADA RURAL 11.430579
- 2 MEXICO RURAL 8.512818
- 3 USA RURAL 8.761600
- 4 CANADA URBAN 31.003091
- 5 MEXICO URBAN 26.191786
- 6 USA URBAN 32.064933
- > barplot(x~Group.2+Group.1 ,data=medexpmean, beside=T,
- + col=c("dodgerblue2","firebrick2"),

```
+ main = "Average Medical Expenses by Country and Location", ylab = "Medical
Expenses", xlab = "Country")
```

- > legend("topleft",c("Rural","Urban"), pch=15, bty="n",
- + col=c("dodgerblue2","firebrick2"))

> incomemean=aggregate(pset1_data\$income, list(pset1_data\$country,pset1_data\$location), FUN=mean)

> incomemean

Group.1 Group.2 x

- 1 CANADA RURAL 33.47368
- 2 MEXICO RURAL 20.81818
- 3 USA RURAL 32.93333
- 4 CANADA URBAN 46.63636
- 5 MEXICO URBAN 38.35714
- 6 USA URBAN 51.46667
- > barplot(x~Group.2+Group.1 ,data=incomemean, beside=T,

```
+ col=c("dodgerblue2","firebrick2"),
```

```
+ main = "Average Income by Country and Location", ylab = "Income", xlab =
"Country")
```

> legend("topleft",c("Rural","Urban"), pch=15, bty="n",

+ col=c("dodgerblue2","firebrick2"))

```
> educationmean=aggregate(pset1_data$education,
list(pset1_data$country,pset1_data$location), FUN=mean)
```

> educationmean

Group.1 Group.2 x

- 1 CANADA RURAL 8.684211
- 2 MEXICO RURAL 6.818182
- 3 USA RURAL 8.466667
- 4 CANADA URBAN 12.545455
- 5 MEXICO URBAN 12.000000

6 USA URBAN 12.800000

```
> barplot(x~Group.2+Group.1 ,data=educationmean, beside=T,
```

```
+ col=c("dodgerblue2","firebrick2"),
```

```
+ main = "Average Education length by Country and Location", ylab =
"Education in years", xlab = "Country")
```

```
> legend("topleft",c("Rural","Urban"), pch=15, bty="n",
```

```
+ col=c("dodgerblue2","firebrick2"))
```

```
> medexpsd=aggregate(pset1_data$medicalexpn,
list(pset1_data$country,pset1_data$location), FUN=sd)
```

```
> medexpsd
```

- Group.1 Group.2 x
- 1 CANADA RURAL 7.629464
- 2 MEXICO RURAL 7.324204
- 3 USA RURAL 7.132344
- 4 CANADA URBAN 8.175206
- 5 MEXICO URBAN 15.517216
- 6 USA URBAN 12.288999
- > barplot(x~Group.2+Group.1 ,data=medexpsd, beside=T,

```
+ col=c("dodgerblue2","firebrick2"),
```

```
+ main = "Std. Dev. of Medical Expenses by Country and Location", ylab =
"Std. Dev.", xlab = "Country")
```

> legend("topleft",c("Rural","Urban"), pch=15, bty="n",

```
+ col=c("dodgerblue2","firebrick2"))
```

```
> incomesd=aggregate(pset1_data$income,
list(pset1_data$country,pset1_data$location), FUN=sd)
```

```
> incomesd
```

Group.1 Group.2 x

- 1 CANADA RURAL 14.23754
- 2 MEXICO RURAL 13.65883
- 3 USA RURAL 16.69246
- 4 CANADA URBAN 16.13241
- 5 MEXICO URBAN 24.65019
- 6 USA URBAN 20.87674
- > barplot(x~Group.2+Group.1 ,data=incomesd, beside=T,
- + col=c("dodgerblue2","firebrick2"),

```
+ main = "Std. Dev. of Income by Country and Location", ylab = "Std. Dev.",
xlab = "Country")
```

> legend("topleft",c("Rural","Urban"), pch=15, bty="n",

```
+ col=c("dodgerblue2","firebrick2"))
```

```
> educationsd=aggregate(pset1_data$education,
list(pset1_data$country,pset1_data$location), FUN=sd)
```

> educationsd

- Group.1 Group.2 x
- 1 CANADA RURAL 3.682581
- 2 MEXICO RURAL 4.445631
- 3 USA RURAL 3.814758
- 4 CANADA URBAN 3.908034
- 5 MEXICO URBAN 5.670436
- 6 USA URBAN 4.126569
- > barplot(x~Group.2+Group.1 ,data=educationsd, beside=T,

```
+ col=c("dodgerblue2","firebrick2"),
```

+ main = "Std. Dev. of Education by Country and Location", ylab = "Std. Dev.", xlab = "Country")

```
> legend("topleft",c("Rural","Urban"), pch=15, bty="n",
```

```
+ col=c("dodgerblue2","firebrick2"))
```

2D) N/A

2E) > plot(pset1_data\$income,pset1_data\$medicalexpn, main="Income vs Medical Expenses Scatter Plot",xlab = "Income",ylab = "Medical Expanses", col=c("dodgerblue2","firebrick2"))

> legend("topleft",c("Medical Expenses","Income"), pch=15, bty="n",

+ col=c("firebrick2","dodgerblue2"))

2F) > cor(pset1_data[,c(3,4,5)])

medicalexpn income education

medicalexpn 1.0000000 0.7482683 0.6895336

income 0.7482683 1.0000000 0.6844115

education 0.6895336 0.6844115 1.0000000

> cor(cbind(pset1_data\$medicalexpn,pset1_data\$income,pset1_data\$education))

[,1] [,2] [,3]

[1,] 1.0000000 0.7482683 0.6895336

[2,] 0.7482683 1.0000000 0.6844115

[3,] 0.6895336 0.6844115 1.0000000